
1

A Study of TCP Dynamics over HFC Networks

Abstract

New broadband access technologies such as Hybrid Fiber Coaxial (HFC) are likely to provide fast and cost effective sup-

port to a variety of applications including Video on demand (VoD), interactive computer games, and internet-type applications

such as Web browsing, ftp, email, and telephony. Since most of these applications, use TCP as the transport layer protocol, the

key to their success largely depends on the effectiveness of the TCP protocol. We investigate the performance of TCP in terms

of effective throughput in an HFC network environment using different load conditions and network buffer sizes. We find that

TCP experiences low throughput as a result of the well known problem of ACK compression. An algorithm that controls ACK

spacing is introduced to improve TCP performance.

Keywords: TCP, HFC, ATM, Congestion avoidance, ACK compression.

1 Introduction

The emergence of the HFC technology has a significant impact on already deployed Cable TV networks. As a

return path from the stations to the headend becomes available, Cable network operators are able to add more ser-

vices to television broadcast. A Medium Access Control (MAC) layer protocol is implemented at the root (or hea-

dend) and at each of the cable network nodes (or stations) to allow various nodes to share resources in a multiaccess

environment. It also controls the upstream (from the stations to the headend) and the downstream (from the headend

to the stations) link transmissions. MAC protocol specifications are being drafted by the IEEE 802.14 working group

to accomodate the needs of current and future network applications. The IEEE 802.14 Draft document [5] contains

various MAC defining characteristics such as: frame format, station addressing, timing and synchronization proce-

dures, and the ternary-tree mechanism to resolve collisions resulting from two or more stations transmitting at the

same time. The MAC draft also provides the necessary “hooks” to support higher layer services such as CBR, VBR

Hossam Afifi *
Hossam.Afifi@enst-bretagne.fr

* Ecole Nationale Supérieure des Télécommunications de Bretagne, Networks and Multimedia Department
2 rue de la Chataigneraie, BP 78, 35512 Cesson Sévigné, France

Omar Elloumi *
Omar.Elloumi@enst-bretagne.fr

** National Institute of Standards and Technology
Gaithersburg, Maryland 20899, USA

David Su**
dsu@isdn.ncsl.nist.gov

Nada Golmie**
golmie@isdn.ncsl.nist.gov

Omar Elloumi will serve as the corresponding author, Phone: (33) 2 99 12 70 42, Fax: (33) 2 99 12 70 30
This work was done while Omar Elloumi was a guest researcher at NIST in Spring 1997.
A complete version of this paper is available via anonymous ftp from ftp.rennes.enst-bretagne.fr pub/reseau/elloumi/tcp_hfc.ps



2

and ABR services for ATM. Numerous performance evaluation studies have been conducted on MAC protocol el-

ements such as contention resolution and bandwidth allocation [8]. Also, some preliminary work has been presented

on improving the ABR service over HFC in [9]. But so far, little work has been done in studying the details and

evaluating the performance of the TCP protocol in an HFC network environment.

The performance of TCP in networks with slow ACKs channel is studied in [3] and [13]. In [13], the authors

focus on the effect of asymmetric networks on TCP performance and show, by means of analysis and simulation,

the performance degradation of TCP (Reno), due to frequent timeouts. However this study does not consider a spe-

cific MAC protocol in the reverse path (upstream channel). This model is appropriate for ADSL modems, or con-

figurations that use a telephone line or cellular phone medium in the reverse channel where the only delay is the

sum of the queuing delay and the propagation delay. However, in the case of multiple access media, such as HFC,

it is important to study the effect of the MAC protocol and bandwidth reservation on TCP performance. In particular

we find that TCP over HFC networks suffers from persistent gaps in the acknowledgments stream. This so-called

“ACK-compression” behavior, [12], [20] is shown to degrade the TCP throughput by causing a burstiness in the

TCP sending rate. We propose an algorithm that attempts to prevent ACK-compressions by preserving a constant

spacing between consecutive ACKs and their corresponding data packets. We find that the proposed algorithm im-

proves TCP performance under different offered loads and TCP data buffer sizes. The rest of the paper is structured

as follows. Section 2 presents the MAC model as specified in [5]. Sections 3 describes the simulation model. Section

4 presents TCP performance results. In section 5 we propose some improvements to TCP performance over HFC.

Concluding remarks are presented in Section 7. Additional details on the simulation parameters and the TCP pro-

tocol can be found in the Appendix.

2 HFC MAC Protocol Overview

The frame format of the MAC protocol defined in [5] is shown in Figure 1 . The upstream channel is divided into

....

Upstream frames

C C C C D

Station

Headend

Upstream {Contention Slots, Data Slots}

Downstream Data & Control Information {feedback, grant, allocation}

Downstream frames

C: Contention Slot

D: Data Slot

n1 n2

D D.... ....C C C C D D D....

.... ....

n1: number of contention slots per frame

n2: number of data slots per frame

Figure 1: Frame format of 802.14 MAC protocol



3

minislots. Minislots that are used to transmit requests in contention are commonly referred to as Contention Slots

(CS). CSs are used to request grants for data transmission (in Data Slots). A special field in the Data Slots may be

used to send piggybacked requests (not subject to contention). One or more minislots can form a Data Slot (DS) to

carry data packets, such as ATM cells. The size of the CS and DS is chosen so that a DS is accommodated in an

integer number of minislots. In our study, we assume that data traffic generated at the station is carried via ATM

cells (each DS can carry one ATM cell), conforming to the draft standard. The headend (HE) allocates the number

of CS and DS slots available on the upstream channel in fixed size clusters or frames.

At start-up, the stations are ranged or synchronized with respect to the headend in order to gain a unique time

reference. Each CS is assigned a Request Queue (RQ) value by the headend. When a station has data to transmit, it

waits for a CS with anRQ value equal to zero, and sends a request. The station waits for feedback information about

the collision status and allocation of DS contained in downstream control messages. In case of collision (two or

more requests arriving at the headend at the same time), the headend performs the ternary-tree blocking algorithm

[1] and assigns different CSs in the next cluster withRQ values greater then 0. The main principle of the ternary-

tree algorithm relies in splitting all stations involved in a collision randomly into 3 subsets and then allowing stations

in the various subsets to retransmit their requests sequentially. In case, the request is successfully received at the

headend, the station is granted a DS to send its data. There are two grant scheduling algorithms considered in this

paper: First Come First Serve (FCFS) and Round Robin (RR). For FCFS, the HE grants each station the totality of

the requested slots before giving any grants to other stations. For RR, the grants are distributed to stations in a Round

Robin fashion. A station sends a cell and waits for all the other stations that have successfully transmitted requests

to the HE to send their data.

3 Simulation model

In this section we provide a description of the simulation environment and parameters. We use the NIST ATM

Network Simulator [6] to implement TCP Tahoe and TCP Reno as described in [19]. The simulator also implements

a MAC protocol for HFC networks as described in [5]. The network model considered is illustrated in Figure 2. It

consists of a hybrid ATM-HFC configuration where a TCP source in the ATM network sends packets to a TCP des-

tination in the HFC network.



4

A network topology is chosen with one TCP con-

nection for a better understanding of TCP dynamics.

The link capacity between the TCP source andSW1 is

set to 155 Mbits/s, while the link capacity between

SW1 andSW2 is set to 6 Mbits/s to represent the bot-

tleneck link. The propagation delay betweenSW1 and

SW2 is set to 1.25 ms.SW1 andSW2 implement the

Early Packet Discard strategy (EPD) [15]. The TCP

source is assumed to have an infinite number of pack-

ets to send. In order to stress contention on the up-

stream channel, we consider 200 stations with on-off

sources sending data upstream to constitute a back-

ground traffic. Sources generate fixed size 48-byte packets (encapsulated in ATM cells) according to a Poisson dis-

tribution with a mean arrival rate of .L is the percentage of the offered load,UR is the upstream

channel rate andN is the number of stations. We use an AAL5 encapsulation of IP packets. After segmentation, cells

are queued in a FIFO queue inside the MAC layer. Unlike [13], we assume that the FIFO queue inside the MAC

layer is large enough to accommodate all incoming ACKs from a single TCP connection. Details on simulation pa-

rameters for both HFC and TCP can be found in Appendix A. We also provide a background on TCP protocol in

Appendix B.

4 Performance of TCP over HFC

In this section we analyse the dynamics of TCP traffic. We consider theeffective throughput of a single TCP con-

nection as a function of the EPD1 threshold inSW1 for different upstream offered loads and grant scheduling algo-

rithms, namely, FCFS, and RR. We define the TCP effective throughput, as the throughput that is usable by higher

layer protocols [15].

4.1 Simulation results

The effective throughput for FCFS and RR scheduling is depicted in Figure 3-(a) and Figure 3-(b) respectively.

1.we assume that the switch buffer is large enough to ensure that if the first cell of a packet is accepted (based on the
EPD algorithm), all remaining cells from the same packet are queued.

TCP Source

TCP

TCP data flow

TCP ACKs flow

ON/OFF Background Traffic
(Sources)

EPD
thresold

DDDD ....

ON/OFF Background Traffic
(Destinations)

TCP Destination

Headend
  Station

ATM switch
    (SW1)

ATM switch
    (SW2)

S S S S....

TCP

Upstream Contention Channel

Figure 2: Simulation model

λ L UR 48××
53 N×

------------------------------=



5

The y-axis gives the throughput as a percentage of the maximum bottleneck link capacity (6Mbits/s). We note that

it is low and can conclude that the TCP connection is unable to fill up the network pipe. The bandwidth-RTT product

doesn’t indicate any reason for this under-utilization. For different upstream offered loads with a maximum conges-

tion window size of 64 Kbytes, we find that the maximum window size is greater than all mean products (with the

exception of 50% load).

4.2 Results analysis

TCP congestion window suggests that the source suffers from frequent timeouts and fast retransmit fast recovery

periods. One possible reason is the ACK compression behavior usually observed when ACKs encounter non empty

queues. When ACKs leave the bottleneck buffer their spacing is smaller than the original spacing at queue entry [2]

[20].

To confirm this problem we plot the interarrival time of consecutive ACKs for 30% offered load with FCFS and

RR in Figure 4-(a) and Figure 4-(b). In Figure 4-(a), we can identify two groups of ACK interarrival times at

y=0.34ms andy=1.19ms. The interval between two data packets sent back to back, is given byPacket_size/µ1 = 1.55

ms whereµ1 is the forward link capacity. This is also equal to the minimum spacing between two TCP data packets.

In our simulation we assume that the time to process a TCP packet and send its corresponding ACK is constant.

Thus the spacing between ACKs should be equal to the spacing between their corresponding data packets if we look

for a good performance. However, Figure 4-(a) and Figure 4-(b) the spacing between them is less than the minimum

spacing between the data packets. This confirms that ACK compression is the main reason for the low effective

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

E
ff
e
ct

iv
e
 t
h
ro

u
g
h
p
u
t

EPD threshold (cells)

10% offered load
20% offered load
30% offered load
40% offered load
50% offered load

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

E
ff
e
ct

iv
e
 t
h
ro

u
g
h
p
u
t

EPD threshold (cells)

10% offered load
20% offered load
30% offered load
40% offered load
50% offered load

Figure 3: TCP Effective throughput vs. EPD threshold

(b) RR HE Grant Allocation(a) FCFS HE Grant Allocation



6

throughput observed.

A look on the MAC layer helps us determine that the ACK-

compression is the result of the grant allocation mechanism used

to send ACKs at the MAC layer. The interval between two ACKs

is equal to ACK_size/Rateupstream, where ACK_size=

NDataSlot*SizeDataSlot. Values of inter ACK spacing equal to

2*64*8/3000=0.34ms (Figure 4-(a) and Figure 4-(b) correspond

to the case where two ACKs are sent back to back in the same

frame (Figure 6-(a)). The second group of points aty=1.19ms cor-

responds to ACKs being sent back to back in two different frames.

In this case, the spacing between two ACKs is equal to two DSs

(corresponding to an ACK packet) andn1 CS (Figure 1). Since each DS corresponds to four CSs, the spacing is

given by 7*64*8/3000=1.19ms. Note that each ACK packet requires two DSs and there are 20 CS (or 5 DSs) in each

cluster for a total of 7 DSs. This is illustrated in Figure 6-(b) and Figure 6-(c). With RR scheduling, we note that the

minimum ACK spacing is also equal 0.34ms when the request queue at the HE contains only one request from the

TCP receiver station. Figure 5 shows the distribution of ACK spacing for both FCFS and RR. More than 85 % of

ACK spacing is lower than the minimum spacing between packets for FCFS. For RR scheduling, the percentage of

ACKs below 1.55 ms is relatively low since the RR algorithm introduces spacing during scheduling. This explains

why better throughput is obtained in Figure 3-(b) with RR than with FCFS in Figure 3-(a).

0

1

2

3

4

5

6

7

8

9 9.5 10 10.5 11 11.5

In
te

r 
A

C
K

s 
a
rr

iv
a
l (

m
s)

time (s)

0

1

2

3

4

5

6

7

8

6.5 7 7.5 8 8.5 9

In
te

r 
A

C
K

s 
a
rr

iv
a
l (

m
s)

time (s)

Figure 4: ACK Interarrival Time, upstream load=30%

(b) RR HE Grant Allocation(a) FCFS HE Grant Allocation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8

fr
a
ct

io
n

Inter ACKs arrival (ms)

FCFS
Round Robin

Figure 5: Distribution of ACK Interarrival time for
FCFS and RR, upstream offered load=30%



7

5 Solutions to the ACK compression behavior

We discuss possible improvements to this problem. As explained in Section 4, TCP low throughput is mainly

attributed to ACK compression. Solutions vary in complexity and implementation. In [12], a general solution is pro-

posed with separate queues for ACKs and data respectively (to improve TCP performance over ATM in the case of

two-way traffic). This ensures that ACKs are not subject to delay and delay variation caused by TCP data packets.

Another improvement is to prevent ACKs from being subject to delay and delay variation inside the MAC layer.

For example, the HE can predict the number of data slots needed by a station to send its ACK packets based on the

number of TCP packets it forwards in the downstream direction. Such a solution requires processing of each ATM

cell header in order to ensure that the ATM cell is part of a data packet. It requires a good estimator for the RTT

(between the HE and the station) and the processing delay at the HE. Although this method should be further inves-

tigated we focus on other mechanisms for ACK spacing implemented in the station MAC layer with less complex-

ity. We first investigate the performance of TCP over HFC using piggybacked requests. Then we propose an

algorithm for ACK spacing that significantly increases TCP throughput.

5.1 TCP performance using Piggybacking

Piggybacking in the MAC layer consists in sending requests for additional data transmission along with a data

packet without having to go through contention. After the first request (sent in contention), subsequent requests are

transmitted in the Extended Bandwidth Request (EBR) field of the MAC data PDU. Since the request is piggy-

backed in the DS, it is not subject to contention. We plot in Figure 7-(a) and (b)  the effective throughput of a TCP

connection, using piggybacking as a function of the EPD threshold for FCFS and RR respectively. Note that in order

to keep the offered load comparable to the simulations performed in Section 4, we only use piggybacking for the

transmission of TCP ACK packets (i.e. not for background traffic). As a direct result of piggybacking the effective

....C C C C D .... ACK1D D ACK1 ....C C C C ACK2 .... DACK2 D D

(a)

(b)

....C C C C D D ....C C C C ACK2 .... DD D

(c)

ACK1ACK1 ACK2.... D

.... DACK1 ACK2 ACK2....C C C C ACK1

Figure 6: ACK compression scenarios



8

cells).We note again that RR scheduling gives better performance results than FCFS scheduling. We attribute this

to the spacing introduced by the RR scheduling that increases the probability to send requests for additional ACK

transmissions in every DS granted.

From the results obtained, we can conclude that piggy-

backing reduces the contention percentage in the case of mul-

tiple TCP sources and gives a shorter upstream delay.

However, the throughput for 50% offered load remains low

due to the relatively large delay incurred. In Figure 8, we plot

the interarrival distribution of TCP ACKs. Compared to Fig-

ure 5, we note a reduction in the ratio of ACKs sent back to

back: with a spacing equal to 0.34ms. Moreover, a relatively

large number of ACKs arrives with a spacing greater than

1.55ms (which is the minimum spacing between data packets)

and hence further alleviates the ACK compression phenomenon reported.

5.2 Acknowledgments spacing

Piggybacking does not adapt itself to a situation where the offered load periodicity (rate) is different from the

arriving packet rate (it does not conserve the optimal spacing between acknowledgments). In this case piggybacked

requests arrive at the headend with a rate (relative to the offered load) that does not match the packet rate and thus

lead to bandwidth waste. We present now a new algorithm that dynamically controls the spacing between TCP

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

E
ff
e
ct

iv
e
 t
h
ro

u
g
h
p
u
t

EPD threshold (cells)

10% offered load
20% offered load
30% offered load
40% offered load
50% offered load

Figure 7: TCP effective throughput vs. EPD threshold, piggybacked requests

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

E
ff
e
ct

iv
e
 t
h
ro

u
g
h
p
u
t

EPD threshold (cells)

10% offered load
20% offered load
30% offered load
40% offered load
50% offered load

(b) RR HE Grant Allocation(a) FCFS HE Grant Allocation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8

fr
a
ct

io
n

Inter ACKs arrival (ms)

FCFS
Round Robin

Figure 8: Distribution of ACK Interarrival Time for
FCFS and RR, Upstream offered load = 30%



9

ACK. This interval is chosen as to increase the bandwidth and to prevent packet losses. We first describe the algo-

rithm and give a pseudo code description. We then explain the simulation results and compare the two solutions.

5.2.1 Dynamic rate tracking algorithm

The algorithm tracks the bottleneck rate capacityµ1. It then calculates the adequate ACK rateµp for the measured

µ1.

µp=µ1/Packet_size

Different methods may be used to estimate the bottleneck rate. Some have been already proposed in rate based

flow control algorithms [11], [16]. We use a very simple method well adapted to TCP behavior in SlowStart and

Congestion-Avoidance working regions. It measures the minimal interarrival time,τ, between two consecutive

ACKs to decide of the ACK sending rate (spacing). In this case 1/τ is an approximation of the bottleneck rate, i.e.

µ1. Since each ACK corresponds to two ATM cells (for Classical IP over ATM), the requested spacing is then set

to τ/2. As we said this is adapted to TCP, since it usually sends packet pairs in both Slow-Start and Congestion-

Avoidance regions. We can measure and always use the shortest interarrival time between two consecutive ACKs

(in the MAC layer FIFO queue). The pseudo code for the proposed algorithm is as follows:

The proposed algorithm can be implemented using an additional option in the HFC MAC layer that permits to

specify an interval for transmitting data. This is achieved at the cost of a slight increase in the MAC grant request

PDU size, namely an 8-bit field containing the transmission rate.

When a new ACK is received
if MAC_queue_is_not_empty()

if τ==0
τ = clock() - last_ack_arrival

else
τ = filter (clock()  - last_ac k_arrival,τ)
/* filter can be Min, Max or Mean */

last_ack_arrival = clock()

Each time a request for new data transmission is sent:
request queue_size() grants with a t ransmission rate τ/2
τ=0



10

5.2.2 Simulation Results

Figure 9 gives the effective throughput of TCP over HFC using

the ACK spacing algorithm proposed. We note that it improves

TCP performance for different offered loads. As expected, no im-

provement can be achieved beyond a load of 50%. This is due to

the large bandwidth delay product incurred at this load.

5.2.3 Piggybacking vs. ACK spacing

As we have mentioned at the beginning of this paragraph, al-

though piggybacking reduces the ACK compression behavior, by

introducing some kind of spacing on successive ACKs, its spacing can not match the original spacing between

ACKs. In this situation ACKs spacing can result in ACK compression and bad performance. To show this short-

coming, we simulated different bottleneck rates (link capacity between SW1 and SW2): 1.5 Mbits/s from 0 to 10 s,

2 Mbits/s from 10 to 20 s and 2.5 Mbits/s from 20 to 30 s of the simulation time (see Figure 10). Our goal is to

compare the stability of piggybacking and ACK spacing. We found that ACK spacing algorithm prevents from TCP

timeouts for the three bottleneck rates. For piggybacking, while the performance is similar to ACK spacing when

the bottleneck rate is under 2.5 Mbits/s, many timeouts are observed when the bottleneck rate is set to 2 Mbits/s and

1.5 Mbits/s. For 1.5 Mbits/s the throughput degradation is very visible (large periods of inactivity). The spacing in-

troduced by piggybacking does not always match the bottleneck rate, and ACKs can be subject to compression.

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

E
ff
e
ct

iv
e
 t
h
ro

u
g
h
p
u
t

EPD threshold (cells)

10% offered load
20% offered load
30% offered load
40% offered load
50% offered load

Figure 9: Effective throughput vs EPD threshold,
min spacing

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

S
e
n
d
e
r 

A
C

K
 s

e
q
u
e
n
ce

 n
u
m

b
e
r 

(M
b
yt

e
s)

time (s)

ACK spacing
Piggy backing

Figure 10: Comparison of Piggybacking and ACK spacing with different bottle-
neck rates: 1.5, 2, 2.5 Mbits for 20% offered load, EPD threshold = 100 cells



11

6 Concluding Remarks

This paper gives some performance results and improvements of the TCP protocol over HFC networks. First, we

show that poor TCP performance is observed due ACK compression. We compare the performance of FCFS and

RR HE scheduling algorithms and found that RR scheduling results in better performance due to the "natural" spac-

ing introduced on successive TCP ACKs. Second, we investigate the effect of piggybacking on TCP performance

and found that it reduces the delay and the delay variation of TCP ACKs. As a result TCP efficiency is improved in

all cases. However piggybacking can still result in bad performance when the data path capacity is small. Finally,

an algorithm for ACK spacing is proposed and is shown to give optimal performance for different offered loads and

network buffer sizes. This algorithm is very simple and aims at conserving the ACKs interarrival time, to respect

the TCP self-clocking mechanism. It can be generalized for other applications, since even if packets are subject to

delay (due to grant requests), it is desirable to conserve, at the MAC layer, the spacing introduced by the applica-

tions. We believe that more studies need to be led in order to investigate other issues such as TCP fairness and delay

over HFC. Although, we used TCP-RENO in our simulations to reflect the large majority of TCP/IP stacks, it may

be interesting to examine the performance of different TCP algorithms, such as SACK-TCP and New-Reno.

7 References

[1] C. Bisdikian. “msStart: A Random Access Algorithm for the IEEE 802.14 HFC Network,”Technical Report, RC 20466,
IBM Research Division, T.J. Watson Research Center, June 1996.

[2] J.C. Bolot, “Charaterizing End-to-End Packet Delay and Loss in the Internet” ,Journal of High-Speed Networks, vol. 2,
no. 3, pp. 305-323, December 1993.

[3] O. Elloumi, H. Afifi, M. Hamdi. “Improving Congestion Avoidance Algorithms in Asymmetric Networks”. Proc. IEEE
ICC ’97. Montreal. June 1997.

[4] J. C. Hoe, “Improving the Startup Behavior of a Congestion Control Scheeme for TCP”, Proc. ACM SIGCOMM’96, Au-
gust 1996, pp 270-280, Stanford, CA.

[5] IEEE 802.14 Working Group, Media Access Control, IEEE Draft Std. 802.14, Draft 2 R2, July 1997.
[6] N. Golmie, A. Koenig, and D. Su, “The NIST ATM Network Simulator, Operation and Programming,” Version 1.0,NIS-

TIR 5703, March 1995.
[7] N. Golmie, S. Masson, G. Pieris, and D. Su:“Performance Evaluation of MAC Protocol Components for HFC Networks,”

Proceedings of the International Society for Optical Engineering, Photonics East’96 Symposium, 18-22 November 1996,
Boston, Massachusetts. Also appeared in Computer Communication, June 1997.

[8] N. Golmie, S. Masson, G. Pieris and D. Su:“Performance Evaluation of Contention Resolution Algorithms: Ternary-tree
vs p-Persistence,”IEEE 802.14 Standard Group, IEEE 802.14/96-241, October 1996.

[9] N. Golmie, M. Corner, J. Liebherr, D. Su, “Improving the Effectiveness of ATM Traffic Control over Hybrid Fiber-Coax
Networks”, Proc. of IEEE Globecom 1997, Phoenix, Arizona.

[10] V. Jacobson, “Congestion Avoidance and Control”, Proc. ACM SIGCOMM’88, pages 314-329, August 1988.
[11] R. Jain, “Rate Based Flow Control”, Proc. M SOMM’96, Aust b.c. 22, pp 270-280, Leonides, Gr.
[12] L. Kalampoukas, A. Varma, K. K. Ramakrishnan, “Two-Way TCP Traffic over ATM: Effects and Analysis”, Proc. Info-

com’97, April 1997, Kobe, Japan.



12

[13] T. V. Lakshman, U. Madhow, B. Suter, “Window-based error recovery and flow control with a slow acknowledgment
channel: a study of TCP/IP performance”, Proc. Infocom’97, April 1997, Kobe, Japan.

[14] J. Postel, “Transmission control protocol”, Request for comment 793, DDN Network Information Center, SRI Internation-
al, September 1981.

[15] A. Romanow, S. Floyd, “ Dynamics of TCP Traffic over ATM Networks”, IEEE JSAC, V. 13 N. 4, May 1995, p. 633-641.
[16] S. Keshav, “Packet Pair Flow Control”, to appear in IEEE/ACM Transactions on Networking, available from http://

www.cs.cornell.edu/skeshav/papers.html
[17] V. Paxson, “Measurements and Analysis of End-to-End Internet Dynamics”, Ph.D. Thesis, LBNL-40319, UCB//CSD-97-

945, University of California, Berkley.
[18] W. R. Stevens, “TCP/IP Illustrated, volume 1”, Addison-Wesley Publishing Compagny, 1994.
[19] W. R. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms”, Request for

Comments 2001, January 1997.
[20] L. Zhang, S. Shenker, D. D. Clark, “Observations on the dynamics of a congestion control algorithm: the effects of 2-way

traffic”, Proc. ACM SIGCOMM’91, pp 133-147, Sept 1991, Zurich, Switzerland.

Appendix A: Simulation parameters

Table 1 : MAC Model parameters

Simulation parameter Value

Number of active stations 200

Distance from nearest/furthest station to headend 25/200 km

Upstream data transmission rate 3 Mbits/s

Downstream data transmission rate 30 Mbits/s

Propagation Delay 5µs/km

Length of Simulation Run 15 s

Length of run prior to gathering statistics 1 s

Guardband and preamble between transmissions Duration of 5 bytes

Data Slot Size 64 bytes

Contention Slot Size 16 bytes

DS/CS Size Ratio 4:1

Cluster Size 2.27 ms

Maximum Request Size 32

Headend Processing Delay 1 ms

Table 2 : TCP parameters

Simulation parameter Value

Maximum Transfer Unit (MTU) 1 KB

Timeout granularity 500 ms

Packet processing time 100µs

Congestion avoidance algorithm TCP Reno

Maximum congestion window size 64 KB

Initial SSThreshold 8 KB



13

Appendix B: TCP Protocol Background Information

Most of today's internet applications use the TCP protocol as defined in [14]. In this section, we describe two basic concepts

of TCP related to congestion avoidance and control.

TCP Congestion Avoidance and Control Mechanisms have significantly evolved in the past few years although the proto-

col packet format and its state machine have remained unchanged. Most versions of TCP control mechanisms aim at improv-

ing the estimation of available network bandwidth and preventing timeouts in order to maintain stability and throughput.

The slow-start algorithm [10] was proposed by Jacobson as a congestion avoidance and control algorithm for TCP after a

congestion collapse of the Internet. This algorithm introduces a congestion window mechanism to control the number of bytes

that the sender is able to transmit before waiting for an acknowledgment. For each received acknowledgment, two new seg-

ments are sent. When the window size reaches a threshold value, SSThreshold, the algorithm operates in Congestion Avoi-

dance mode. The slow start is triggered every retransmission timeout by setting SSThreshold to half the congestion window

and the congestion window to one segment. In the Congestion Avoidance phase, the congestion window is increased by one

segment every Round Trip Time (RTT). Thus when the mechanism anticipates a congestion, it increases the congestion win-

dow linearly rather than exponentially. The upper limit for this region is the value of the receiver's advertised window. If the

transmitter receives three duplicate acknowledgments, SSThreshold is set to half of the preceding congestion window size

while this latter is set to one packet for TCP Tahoe and half of the previous congestion window for TCP Reno. At this point the

algorithm assumes that the packet is lost, and retransmits it before the timer expires. This algorithm is known as the fast-

retransmit mechanism.

TCP Tahoe experiences low throughput when packets are lost because of the slow-start algorithm. TCP Reno performs bet-

ter in the case of single packet loss within one window of data because the congestion window is decreased by half rather than

set to one. However, in the case of multiple packet losses, TCP Reno also experiences low throughput since it can easily be

subject to timeouts leading to long idle periods. This is outlined in [4] and [13]. In [4], the author proposes the so-called

``New-Reno'' algorithm to avoid this problem.

TCP Self-clocking Principle [10] estimates the bottleneck bandwidth by letting the sender rate exactly match the available

bandwidth along the network path. Thus if the time to process packets at the receiver is constant, ACKs are spaced according

to the bottleneck in the forward path. If the network is symmetric, the ACK spacing is preserved in the backward direction

since the ACK packet size is much smaller than the data packet size and thus less likely to encounter congestion. When the

sender transmits a packet for each arriving ACK, the packet sending rate matches the bottleneck service rate and this consti-

tutes a ``self-clocking'' mechanism, an ``idealized state'' as mentioned in [12], [17] and [20].

However, this mechanism fails in the case of delay variations in both the forward and backward directions. In particular, in

the case of two-way TCP traffic, ACK spacing is not preserved due to the interaction between data packets and ACKs: ACKs

accumulate behind large data packets and then leave the bottleneck with a smaller spacing than the spacing corresponding to

their data packets [12], [20]. Furthermore, ACK compression may lead to a rapid network queue build-up and a high packet

loss percentage as shown in [20]. Even with infinite buffers, the network utilization is expected to drop considerably.


